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CHAPTER 1

ENERGY FLOW IN A DEGENERATE SEMICONDUCTOR
DEVICE WITH NONUNIFORM BAND STRUCTURE

AND RADIATION

1.1 Introduction

The simulation of heat or energy flow in semiconductor devices is a complex problem.

There are three basic models for energy transport: The first one is due to Stratton (1],

which represents a good approximation as long as the asymmetric portion of the momen-

tum distribution of carriers is small. The so-called hydrodynamic model due to Blotekjaer

[2] is slightly more general but has the disadvantage that several transport coefficients

can only be determined by direct solution of the Boltzmann transport equations (BTE).

The third is, of course, the direct solution of the BTE by the Monte-Carlo methods, for

example. Here we use Stratton's approach with a careful choice of proper expressions for

particle and energy or heat fluxes. Expressions for particle fluxes derived from the BTE

have been studied extensively [3]-[12J.

We begin with a discussion of the coupling of the energy conservation equations

for various physical subsystems, including the radiation system, as appropriate for the

simulation of optoelectronic semiconductor devices. We examine various mathemati-

cally equivalent expressions for their numerical performance in actual simulations. The

discretized heat equation often shows signs of an ill-conditioned matrix problem. We

investigate causes and cures, and discuss the discretization scheme for various flux ex-

pressions.

We consider three types of boundary conditions for the thermal equation: Dirichlet

conditions, von Neumann conditions with vanishing energy flux, and heat current bound-

ary condition. In a realistic situation, lead wires are typically used to provide a current



I
or voltage bias. We also review the adaptability of the various equivalent expressions for

particle and energy fluxes, and attempt to clarify physical concepts of heat flux and dis-

sipative energy flux in the energy transport equation. These concepts are often borrowed

from classical nonequilibrium thermodynamics and need to be adapted to the electron

dynamics in semiconductors. I

1.2 Conservation of Energy

We consider four physical systems: the systems of electrons, the holes, the crystal

lattice, and the radiation. We then can construct four energy conservation equations for

these four systems (Appendix A): I

aul/t = -v S S. - ECUHsR - Qe-lat  I
+ XAug + X-h - E+,Urd + hFRefc, (1.1)

aUh/at = -V -Sh - E7UHsR - Qh-lat

+ XAug + Xe-h - E,,aUrad + h JRh,fc, (1.2)

aulmt/eat = -V. -lt + E+UHSR + Q, (1.3)

Oalrad/t = -V Srd + hz (Urad - Rfc), (1.4)

E+ = E + - E7, hZZ= E+f - E-,

Rfc = - R,, Q =Qe-I. - Qh-lt.

Here t is time, and Ue, Uh, ult, and Urad are the energy densities for the electron, the

hole, the lattice, and the radiation systems, respectively. The vectors, Se, Sh, Slat,

and Sr, are the energy flux dcisities for the respective systems. The energy flux for

the radiation system, Srad, is also called the Poynting vector in electromagnetics. The

symbols, U,.d and UHsR, represent the net rates of radiative recombination and Hall-

Shockley-Reed recombination, and R fc and Rf' refer to the free-carrier-absorption rate

2I



for electrons and holes, respectively. The energy denoted by E+ , which is slightly larger

than the energy band gap Eg, is the average energy released by the Hall-Shockley-Reed

recombination or the Auger recombination depending on where it is used. The constant,

h = h/27r, is the Planck constant, and ho is the average energy released by the radiative

recombination. The terms XAug and X-h represent the rate of energy exchange due

to the Auger recombination and electron-hole scattering, respectively. The terms Qe

and Qh represent the heat dissipation to the lattice system from the respective carrier

systems by the in,.raband thermal relaxation process. The sources of these terms are the

Joule heat, the Peltier heat (at abrupt heterojunctions), and the heat dissipated from

excited electrons or holes due to free carrier absorption and the Auger process. The

Auger process itself does not involve energy transfer to the lattice system. However, the

Auger recombination process, as well as the free-carrier absorption process, leaves an

electron in mid-conduction band or a hole in mid-valence band. This carrier then relaxes

its energy, giving off heat to the lattice. The energy transferred to the lattice system by

this process, as well as the Joule heat, is included in the term Q.

The radiation system and the lattice system can be thought of as sums of energy

conservation equations for infinitely many modes. The radiation system is often conve-

niently represented by the photon rate equations for individual modes after integrating

over the space under consideration. Each photon rate equation is of the form

OS/Ot = G.S, + XP - S.,/7ph- (1.5)

Here -r, is the photon lifetime, and Si,, G,, and RP are the photon occupation number, the

mode gain, and the spontaneous emission rate of mode v. Note that the space integration

of the Poynting vector has, with that of the free-carrier absorption term, been replaced

by SI/r,, and that of the optical energy density has been replaced by the sum of S,'s.

The lattice system cannot be treated in this way. The anharmonicity of the Hamilto-

nian creates a coupling of phonon modes resulting in thermodynamically irreversible heat

dissipation through Umklapp processes. Energy exchange between the carrier system and

I 3



I
the resonant radiation system (as in a semiconductor laser) maintains the reversibility

on short-time scales, resulting in transient "ringing" of radiation mode amplitudes.

The information which we seek to obtain from the heat flow simulation is the in- I
ternal temperature distribution. If the energy exchange among the various systems is

weak, one is forced to introduce individual average energies for electrons, holes, lat- I
tices, and photons. If the energy exchange between the electron system and the hole

system is fast enough, the average electron and hole energies can be considered equal,

and we need only one conservation equation for those two systems with the source term

-ho (U r d - Rfc) - E+UHSR - Q. If the energy exchange between the carrier and

lattice systems is rapid, we can introduce a temperature which is equal for electrons, I
holes, and the crystal lattice, and we may combine (1.1)-(1.3) to obtain

a I
2 (1.6)

In doing this we have canceled the heat dissipation term Q for the Joule heat and the

hot carrier relaxation, either of which is not easy to realize or have no simple explicit

expression for numerical simulation.

In the simulations we also need to include the Poisson equation and the following

carrier continuity equations along with energy balance equations.

a I
Yt fnPA + V U3., h} +Urd + UHSR +UAugO.0 (1.7)

Here n [p] and je [ h] are the electron [hole] density and the particle flux density, re-

spectively, and UAug is the net rate of the Auger recombination. To solve all equations

self-consistently, one needs to express the various contributions to those equations in

terms of a set of variables which are chosen as the unknowns for the system of equations.

These variables are the electrostatic potential, the carrier densities n and p, and the

temperature, under the assumption that local equilibrium is maintained so that a local I
temperature is a valid concept. Instead of n and p, we use 77. and 7N, sometimes called

4
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"Planck potentials" [131 which are defined below. This is advantageous when the heat

transfer is involved.

1.3 Analytic Considerations

1.3.1 Expressions for the conserved quantities and sources

I There are various expressions available for the various rate terms in (1.5)-(1.7) with

I varying degrees of approximation, which are described, e.g., in [14].

The conserved quantities in the continuity equations can be expressed in terms of q/e,

I , and temperature. Assuming a parabolic band structure with density-of-states-equi-

valent effective masses m, and mh for electrons and holes, respectively, one has

n = NC'T3 /2 1 / 2(77-), p = N,T 3 /2 Fi,2(,), (1.8)

ue -_ N T3 /2 [ T-73 / 2(77.) + Ec F/ 2 (77) , (1.9)121
uh t- N(,T 3/2 3 T-3/2(q) - Ev-Fi/2()], (1.10)N,12 1

N , = 2 (m, /272) 3/2 , N -, 2 (Mh/27rh2)3/ 2 ,

7e = (Fe - Ec) IT, nh = (Ev - Fh) IT, (~i

Ec=-q'-x, Ev=Ec-EG, (1.12)

U where Fe and Fh are the quasi-Fermi levels for electrons and holes, respectively, EC and

Ev are the conduction and valence band edges, respectively, and ? is the electrostatic

potential. The variables X and EG refer to the electron affinity and bandgap of the

material, respectively, and T is the temperature in energy units. Closed-form expressions

for the above quantities for nonparabolic band structure are found in [7]. The effect of

particle streaming on the carrier densities has been included within the framework of local

* 5



quasi-Fermi levels and the local temperatures. However, the effect on the energy densities

m: 1Ije12 /n, which is additional to (1.9), has been ignored by taking the equilibrium

Fermi-Dirac functions for the integration over the phase space. This should be of concern

as discussed in Appendix A regarding the equation for the conservation of energy.

The energy stored in the lattice is [91 1
,,t = D(w) dw, (1.13) I

where wD represents the Debye frequency, and D(w) is the density of phonon states. For 3
use in the context of time derivative, the following equation is used [13].

auit/8t = cpt9T/8t, (1.14)

where cp is the pressure-specific heat capacity per unit volume of the device material.

The expression for each term of ho (U ra- Rfc) in (1.6), which represents the energy I
exchange from the stimulated emission, spontaneous emission, and free-carrier absorp-

tion, are discussed in Chapter 2. I

1.3.2 Expressions for fluxes I
In addition to the above rates, expressions for the various fluxes are needed. We

assume that the relaxation time of hot carriers is negligibly small on our time scale.

Then we can use the linear form of the transport equations derived from the BTE for 3
the particle fluxes in the absence of a magnetic field in a degenerate semiconductor. The

particular form of expressions for various fluxes which we use here is most suitable for 3
the case when the carrier degeneracy, band structure nonuniformity, and temperature

gradient are important at the same time. I

je = -M. ['Fo(7) (TV77e + VEc) + 2'1F(?l7)VT], (1.15) 3
jh = -Mh [.F0(?le) (TVh - VEv) + 2Y,(r/h)VT], (1.16) 3

6I
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M. = pen/qFo(re), . Mh = php/qFo(ih). (1.17)

Here Pe and pih are the mobilities of electrons and holes, respectively, and q is the el-

ementary charge. The energy flux expressions which are symmetric in the sense of the

IOnsager relations [13] are

Se= ECje + S , Sh = Evjh - S , (1.18)

S = -MeT [2F'i(77e) (TVie + VEc) + 6F'2(?le)VT], (1.19)

SI= -MhT [2i (%) (TVqh - VEv) + 6F'2(%,)VT]. (1.20)

The derivation of the above particular forms with an extension to the first-order approxi-

mation for the nonparabolic bands is given in Appendix B, along with integral expressions

deduced from the BTE.

IThe heat flux equation for phonons,

S = -cVT, (1.21)

can also be used as the expression for the phonon energy flux, with r being the lattice

heat conductivity of the material.

1.3.3 Quantum-well regions

The expressions in (1.8)-(1.12) are used everywhere except in the size-quantized re-

gions. Inside the quantum well, we use

fl - ,Eth 2 -

n ,i- (__), (1.23)

72hq- 2m, tqq

7



q
where mh and m~h are the heavy and light hole masses in the quantum well, respectively, 3
which may differ from the values for a bulk semiconductor. In this way, we have been

able to simplify expressions for various physical quantities when the temperature is also 3
a variable in the system of equations.

The particle current at the abrupt hetero-interface is due to thermionic emission. The U
net electron current toward the outside of the quantum well at the interface is simulated

asI
r in out)~E-2 [exp (77 Tin exp(r°uIt)]

f-= 2/ (1/m' + I /m-ut), T = (Tin + Tout) /2,

where m in is the effective mass of electrons for the node at the quantum-well side (lower
t 7,n, _7ut

Ec), while mut is that for the side of higher band edge Ec. Variables such as r", 7 u, I
Eg', and E ut are all similarly defined. Also, the corresponding energy current should be

simulated accordingly. That is, 3
S. = (E ut 4. T" + Tout) j 3

at the hetero-interface. The net hole current and hole energy current are similarly ex- -
pressed, taking both the heavy and light holes into account. Previous simulations of het-

erostructure lasers [151-[19] were based solely on the drift-diffusion model for the carrier 3
transport. This model yielding over-estimated drift velocity at the abrupt hetero-inter-

face is not only physically incorrect, but also prone to poor convergence if the electrostatic 3
potential varies strongly around the abrupt hetero-interface with high injection currents. I
1.4 Conditioning the Heat Flow Equation

In numerical simulations with finite floating-point precision, one needs to consider

the degree of conditioning of the system of partial differential equations (in our case, 3
(1.6)-(1.7)). Notice that je and Jh are multiplied by Ec and Ev in (1.19) and (1.20),

respectively. The energies EC and Ev have been cited with no reference level, since the I
8I
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zero point of energy can be chosen freely as long as it is consistent throughout. Then

Ec and Ev are determined by solving the Poisson equation, and the absolute values of

these two quantities from (1.12) are usually much greater than T, the thermal energy.

Therefore, the magnitude of the first terms in (1.19)-(1.20) is much greater than the

remainder of the equations. As a consequence, the heat flow equation, (1.6), becomes

approximately equal to a linear combination of the carrier continuity equations, (1.7),

whenever the recombination terms or the lattice heat flux term is much smaller than

JEcje - Evjhl at any portion of the device profile. This results in an ill-conditioned

matrix problem after discretization on a finite-precision digital computer, and may be

the main cause of the poor convergence in many heat flow simulation problems which

do not include the second terms in (1.19)-(1.20), or are not properly conditioned. It is,

therefore, of great importance to choose an appropriate energy reference for Ec and Ev.

A reasonable strategy for this choice is to separate reference levels for the two band edges.

The radiative recombination rate term cancels out by choosing Ecef = (Ec +Ev)/2+h'i/2

and Evt = (Yc + Ev)/2 - hUi/2 for the two reference levels E' and Evf, where Ec and

I Ev are the average values of conduction and valence band edges, respectively. Then,

- N [T13 .i(1) +_ - - h) F 1 (77e)

I -VV N(Tl [I TY3j(1hl) + (Ev - E. + hoi/2) Fi.(qh)]}
V] - - VT + V.- [(Ec - Eo - hU/2) je + e$ki

I + (-Ev + E. - ha/2)j - Skin]

-o (uHSR + UAug + -)o) (1.24)

EI E= (7Ec- Tv) /2,

I

I



U
where Eo is a constant energy offset chosen as the average of Ec and Ev at the electrode 3
nodes from the boundary condition. This form has been found to work well for strongly

forward-biased devices with high carrier and doping densities. :

We think that the above method will work for most cases. For high voltage devices,

it may be necessary to solve the equations first without the energy flow equation and get I
the profiles of Ec and Ev, and then set up energy references which are all different for

all discretized equations.

1.5 Discretization of Flux Equations U
To discretize the system of partial differential equations arising from (1.6)-(1.7), we I

use the finite-difference method with the box discretization scheme [2C] applied to rectan-

gular meshes. A well-known method for this type of discretization problem with uniform I
temperature was first introduced by Scharfetter and Gummel [211. This method has been 3
extended for the nonisothermal cases with simplified expressions for the nonisothermal

currents in [22]-[23]. Here we show the results for our expressions in (1.15)-(1.20) for 3
the fluxes.

We first transform the expressions for the flux densities for electrons, (1.15) and (1.19)

into

= M {T'yo(?ie)V.'o(77e) + o(7e) [VEc + 2ti (7le)VT]}, (1.25)

S% =-2M.T {T-y1 (7e)VF 1 (i) I
+ I (e)[VEc + 3- 2 (77e)VT]}, (1.26) 3

7A(17) =- ' ()/.-1(9). 3
Note that all orders of -yj(77) become 1 for a nondegenerate carrier system. We assume

here that the potential and temperature are almost linear in the inter-'a! !ctween two I
nodes, i and i + 1, located at positions x = xi and xi+,, respectively. Then the discretized

10I |I



form for the electron flux in the +x direction is found to be

xi+ 1x= 1+ IM [L3 (AT(,, 2)Yo(? li)
J-i+ - i-

-Bl(-A'Q, ()O 'qe/l+l)] ,  (1.27)

S 'J = 2 T+.t'' 6A2 ))
2 2f+ Xf+l - Xi

- B(-AI 2, e 2)F'1 (?i+1)], (1.28)

B(L(Aj, %) = AIPi/ [exp(A Ti /O) - 11,

AQj = Ec+ - Eci + (j + 1)yj(T)(Ti+i -Ti),

= 7),.1(I) (T,+ 1 + T) /2,

-= (?hlj + iieIj+,) /2.

Here, a function 8(-) has been introduced by modifying the Bernoulli function B( )

/ (et - 1) to accommodate the temperature gradient and Fermi-Dirac statistics. It is

possible to use .Fo(.) instead of.F1(.) only if we replace B(A'I' 2, 02) with -Y, ()B(A T 2, E1).

That is,

Meli+i

+ = 2 T+I 7,(T.) [B(A 2, 01) 0(77,i)
2 /+1 - Xi

- B(-T 2 , o) o(7lfi+i)I • (1.29)

This scheme is used in actual implementation of the algorithm.

For the other three directions, and also for the four components of hole flux and

energy flux, one may obtain similar expressions. Note that a nonuniform band structure

such as graded heterojunctions in compound semiconductor devices are all included in

the basic variables, without introducing additional parameters, which was suggested in

[24], for numerical simulation.
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Inside the quantum well with the staircase-like density of states, although the basic 3

assumption used to derive the linearized carrier transport equations in (1.15)-(1.20) is not

valid, we assume that those equations are still approximately valid with the adaptation 3
that

.To(?ie) and .Fo(7 ) are replaced by n/Nc and p/Nv, (1.30) 1
respectively, where {n, p} are those of (1.22)-(1.23). In a quantum-well laser, the overall 3
carrier transport is hardly affected by the accuracy of the transport model for the quan-

tum-well regions. 3

1.6 Boundary Conditions for the Heat Flow Equation U
Boundary conditions represent a more complex problem for the heat transfer equation I

than for the ordinary carrier transport equations. Here we consider only special cases.

The simplest case is a boundary contacting an ideal heat sink. This results in a Dirichlet

boundary condition. The next simplest case is the von Neumann condition with vanishing I
heat flux for the air-semiconductor boundaries. For this condition, one neglects the small

amount of heat dissipated to the air. The realistic boundary condition at the electrode 3
is mor complicated. Suppose that the total amount of heat-flow out of an electrode

is given. This then becomes a heat current boundary condition similar to the carrier 3
current boundary condition for the carrier continuity equations.

A simple schematic band diagram showing the two quasi-Fermi levels for a semicon- -
ductor laser diode with a strong forward-bias is shown in Figure 1.1. Although most

injected carriers recombine at the junction region, still many not-yet-recombined carriers I
reach the electrodes. This is represented by the two split quasi-Fermi levels throughout

the device. At the anode, such electrons lose energy to the lattice heating the contact I
region, while holes gain energy cooling the same region.

One-dimensional analysis for the heat generated at the metal-semiconductor Shottky

contact was done by Stratton [25]. Here we should consider both electrons and holes 3

12 I
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Figure 1.1: Schematic energy-band diagram for the quasi-Fermi levels in a forward-
biased, one-dimensional, semiconductor laser diode.

together, and provide a two-dimensional formula permitting a variation of current along

the contact. We assume that the contact is an ideal ohmic contact. The electrons or holes

then meet either a tunneling barrier or a band discontinuity, and the incoming energy

flux to the contact is described by

(Se - Sh + Sat Srad) " f, (1.31)

where ft is the outward normal unit vector at the contact. We only have a sea of electrons

which are supported by an almost uniform Fermi level in the metal, Fme. Then the

energy flux into the contact area is

(smet + S . (1.32)

From the conservation of energy, the sum of (1.31) and (1.32) should be zero. Following

[91, the energy flux carried by the electrons in the metal is Fm' t + TJSt, where Jmet is

the entropy flux in the metal, and TJmset is sometimes called the "dissipative energy flux

[261." This last flux is again [13]

TJPset = 7rretj - (KIet + ,cmet) VT, (1.33)
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I
where ir"' is the Peltier potential [8]. The coefficients ICm '( and r.me' represent the elec- 3
tronic and lattice thermal conductivities, respectively, of the metal used for the electrode.

The dissipative energy flow from the contact to the bulk metal region is 3

IA+,T 's  " hds 
T= I '  3

where integration is done over the area (in the metal side) of semiconductor-metal in- -
terface denoted by 'At.' For the heat current boundary condition, we are to specify

this quantity or provide necessary relations which specify this quantity at last. Then an 3
equivalent expression provides the necessary boundary condition: I

A (S - Sh + SI.L + Srd) -Ids - A+ Finetj ids = IQ, (1.34). ,+ I
where fA- represents the area integration in the semiconductor side.

Note that an electron loses a considerable amount of energy when equilibrating at U
the contact, while a hole gains a slight amount. However, when the injection level is

high, the number of holes injected at the anode can be so much larger than that of the I
electrons reaching the anode that the overall effect cannot be determined by calculating

only the energy loss of electrons. Similar arguments can be applied to the cathode side.

This time, electrons are cooling the contact region as a resuit. 3
By assuming an ohmic contact, the Fermi level of the metal can be seen as the

equilibrium Fermi level of the semiconductor just inside the contact. Then the heat 3
current boundary condition can be constructed as

[(E~ m - F(E m- Feq)jh

+S~ki" + Shin + $e + $,a]"] fids = IQ. (1.35) 1
We should express all the fluxes in the left-hand side in terms of chosen independent I

variables. With this expression for the heat current boundary condition, we can assign

14 1
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a specific amount of heat flux for IQ, or relate this expression with the formula which

is to be obtained from physical consideration of the environment discussed in the next

chapter.

Still not considered is the light absorption, denoted by Sra4 , at the electrode or the

semiconductor-metal interface. In direct band-gap semiconductors with excess carriers,

this contribution may not be ignored. For the stimulated emission in a semiconductor

laser. the laser light does not hit the electrode metal directly. Although the metallic

surface has a high reflectivity above 0.9, the tail of the Fabry-Perot mode pattern still

intrudes into the metal to the skin depth, and the mode intensity is so great when lasing

that we need to introduce a phenomenological radiation heat-coupling coefficient for each

electrode. This absorption of light power is a part of the so-called waveguide loss, and

thus the value of the coupling coefficient cannot be larger than what the waveguide

loss coefficient implies. For the portions from the spontaneous emission and from the

stimulated emission, we thus introduce respective power coupling coefficients X'P and X t

as Lf r fd = + xthwU") d3. (1.36)

The right-hand side integration is carried out over the whole device volume. The values

of these coefficients are considered to be strongly dependent on geometry.
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CHAPTER2 3
MINILASE AND TWO-DIMENSIONAL ANALYSIS OF

QUANTUM-WELL LASERS

I
2.1 Introduction I

Semiconductor lasers have mainly been analyzed by use of analytical or simple nu-

merical models. Such models, however, cannot fully account for the multidimensional 3
nature of light and carrier interactions in various laser structures. Even for a simple

wide-stripe laser, the effects of laser switching, multimode behavior, and particularly I
the semiconductor quantum-well geometry can only be understood by elaborate numer-

ical techniques. Two-dimensional simulators have previously been developed by other 3
groups [15]-[191. Of particular interest is the pioneering work of Wilt and Yariv [15].

Our simulator, "MINILASE," represents an improvement for the design of quantum-well I
lasers and high-power semiconductor lasers. It can account for heat conduction, temper-

ature distribution, and multiple spectral mode behavior as well as other two-dimensional I
characteristics of carrier flow and optical intensity profile.

The design goal of MINILASE is a correct implementation of semiconductor physics. I
Since it solves for the internal temperature distribution, it should be useful in long- 3
wavelength semiconductor laser applications, where the threshold current exhibits a

strong temperature dependence, as well as for power semiconductor laser applications. 3
Additionally, the fact that MINILASE correctly simulates the switching response of the

laser will be useful in applications such as short-range optical communications in optical 3
integrated circuits as well as high-speed long-distance data communication.

MINILASE has been designed as follows: For the electronic part, it discretizes, by the 3
finite-box-integration method [20], four partial differential equations including the heat

flow equation. It solves the resulting nonlinear simultaneous equations by the full-Newton I
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method for both steady-state and transient responses. For the optical part, it solves

the Helmholtz eigenvalue equation on a two-dimensional cross-sectional plane, so that

MINILASE can accommodate various profiles of compound semiconductor compositions.

From an outer iteration with the photon rate equation, MINILASE yields the individual

photon numbers of multiple spectral modes, which permits spectral mode analysis of the

optical transition rates in semiconductor lasers.

We have applied our simulator to GaAs-AlGaAs graded-index-separate-confinemen,-

heterostructure buried-quantum-well (GRINSCH buried-QW) lasers [27]. The results are

in good agreement with the available experimental data.

2.2 Physical Considerations

At least four equations are necessary to simulate semiconductor lasers; the Poisson

equation for the potential, the two continuity equations of the form given in (1.7) for

the carrier transport, and the Helmholtz eigenvalue equation for the optical field. We

add the heat flow equation given in (1.6) to obtain the temperature distribution. We

henceforth call the first three equations and the heat flow equation the electronic part

equations. Then the partial differential equations for the electronic part are

- V.V+q(n-p-ND+ NZ) =0, (2.1)

dn/dt + V-j, + Urt + U:.Pd + UHSR + UAug = 0, (2.2)

dp/dt + V. jh + Urd + Ur% + UHSR + UAug = 0, (2.3)

du/dt -v.KVT + vR + r)- • - E+ rp  O. (2.4)

IJere e is the static permittivity of the material, and N+ [NZ] is the density of ionized

donor [acceptor] impurities.

By introducing only one temperature (for both the electron gas and the crystal lattice)

and only one equation for the heat transfer, we have assumed that phonon scattering
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leads quickly to a local equilibrium. This assumption is valid since our scale of transient I
analysis is in the order of 1 ns, while the momentum relaxation time is in the order of

1 ps.

The Helmholtz equation can be derived from the Maxwell equations by ignoring

spatial derivatives of e, the relative permittivity at optical frequency w, as follows:

(V + 4w 2/C2 
-2 ) = 0, (2.5)

where c is the light velocity in a vacuum, and € and P are the optical field and its prop- I
agation constant, respectively. Here we solve the two-dimensional Helmholtz equation

directly rather than employing the effective refractive index method [281. By doing this

the simulator can exactly analyze virtually any refractive index profile. It should be

noted however that this equation totally neglects the vectorial nature of the electromag-

netics problem. We then simply use the Dirichlet boundary condition at the natural 3
boundary assuming that the field amplitude at the boundary is negligible. When the

device profile is symmetric, we use the vanishing Neumann boundary condition along the 3
line of symmetry, and solve the equation in a half domain for a symmetrically designed

profile. We fix w at the center frequency of stimulated emission, and solve (2.5) for the 3
eigenvalues fl2 and the corresponding eigenfunctions 4. Then we get multiple transverse

mode solutions. We cannot actually predict how those transverse modes will develop. U
There are also multiple longitudinal modes which form a beat pattern in space, making

the density of carriers irregular along the longitudinal direction. In our simulation, we

have assumed that all the characteristics are uniform along the optical axis either because

such an irregular beat pattern is random so that the overall effect can be ignored, or be-

cause only one optical mode is dominant, as in well-designed quantum-well lasers. Even

for a double-heterojunction laser, when the laser is shorter than 50 pm long, we need not

consider such a problem since there is only one longitudinal mode actually lasing. 3

I
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Outer iteration is done with the photon rate equation in (1.5), viz.,

dS,. /dt = G . S + R:P - S,/- .

We have used a form which explicitly involves the mode occupation number S,, of each

mode v. In principle, we can get a self-consistent solution if we solve the above six

equations iteratively.

3 2.3 Modeling of physical Parameters

2.3.1 Sources of Poisson equation

Throughout the formulation, we intentionally use the variables 7e and qjh rather than

carrier densities, n and p, which can be expressed in terms of the former variables as in

(1.8). These expressions are valid in the regions whose band edges can be approximated

to be parabolic. However, in size-quantized regions, i.e., inside the quantum well, we

need to use (1.22)-(1.23) with m, = 0.45mo and mlh = 0.08mo according to [29] for

GaAs.

In the semiconductor laser application, we cannot ignore incomplete ionization of

dopants. Specifically we use, for N + and N ,

NDo- NA(26
-D 1+ 2exp(7, + ED/T)' N A - 1 + 4exp(% + CA/T)' (2.6)

where CD and CA are the absolute values of the energy levels of donor and acceptor states,

i respectively, with respect to the corresponding band edges.

1

U
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I
2.3.2 Hall-Shockley-Reed recombination 3

For the modeling of the Hall-Shockley-Reed (HSR) recombination rate, we use 3
UR e(n +n) + h (p + P)'

no = NCT3/2/ 1 1 2 ( (F - E) IT),

P0 = N(,T 3/2.F1 / 2( (Ev - T) IT),

n= = NCjT 3/2.F'/2((ET - Ec)IT), N
=, = N(1T 3/ 1 /2 ((Ev - ET)IT), 3

F - (F. + Fh)/2

where noPo is the product of equilibrium densities of electrons and holes, while n, and pi

are the respective densities when the Fermi energy is positioned at the trap energy level I
ET. The HSR recombination is a typical nonradiative recombination, and this generates

heat when the net effect is a recombination of electron-hole pairs. The strength of this

is modeled by the parameters rn and rp in (2.7). The numerical values for this depends 3
on the purity of the device and crystal defects. In the simulation example, we use

,r rp _ 5 • 10' s throughout the whole device, assuming that the device is free of 3
defects so that the HSR recombination is not a major recombination process. Obviously,

the values for r, and rp can be changed locally if necessary. 3
2.3.3 Auger recombination 3

It is known that Auger recombination is not as crucial for the temperature dependence

of the threshold current in GaAs-AlGaAs lasers as it is in long-wavelength lasers (e.g., I
InGaAsP lasers). There are several different kinds of Auger processes according to which

bands are involved-CCCH, CHHS, and CHHL processes-and to whether the phonon is I
involved-phonon-less CHHS and phonon-assisted CHHS processes. For semiconductors 3
with EG > A, the CHHL process is negligible compared to the CHHS process. For

20 I
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GaAs, the Auger coefficient for phonon-less CCCH process is zero, since the condition of

energy-momentum conservation is not satisfied [30], [31]. Among the various kinds of pho-

non-scattering which assist the Auger processes, the deformation-potential LO-phonon-

scattering is known to be most responsible for Auger recombination at low temperatures,

followed by the polar-optical LO-phonon-scattering [32], [33]. These two kinds of phonon-

assisted Auger processes yield relatively weak temperature dependence. Consequently,

we only have the LO-phonon-assisted CCCH process for C,, whereas we have the phonon-

less and the LO-phonon-assisted CHHS processes for Ch in the following model:

UAug = [ c nP r ~h~] (r~ r p) (2.8)

where nr is the electron density in the IF valley.

For Al.Gal,.,As, we take

CP()= CP(0) { [E"G() - AMO] / [EG() (2.9)

Cn(X) = Cn(0) [Eo(O)/E(x)] (2.10)

with -fA - 1.5 from approximate expressions in [31].

For the quantum-well active layer, the work of Takeshima [34] suggests that Cn < Cp

also for the quasi-two-dimensional gases. Since the quantum-well active layer is normally

undoped, and has almost the same densities of electrons and holes, we thus can ignore the

CCCH process. It was found that the phonon-assisted CHHS process for a quantum-well

laser has only a weak temperature dependence [34]. The well-thickness dependence of

Auger processes at room temperatures was also found to be weak around the threshold

injection carrier densities of a quantum-well laser [35], [34]. Hence, for the GaAs quan-

tum-well active layer, we use the room-temperature Auger coefficients of the bulk GaAs

for all temperatures for Cp in the first approximation.
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Table 2.1: GaAs Characteristics I

parameters symb. data ref. I
Spontaneous recomb. coeff. B0  0.77. 1010 cm 3/s [361
CCCH Auger coeff. at 300 K C, 10- 36 cm 6 -s- 1  [371
Phonon-less CHHS Auger coeff. at 600 K CI"ph 2.- 10-29 cm6 . s- ' [381
Phonon-assisted CHHS Auger coeff. at 100 K CPph 10 - 32 cm 6 _s -  [39]Energy band gap at 0 K EG(0) 1.519 eV [40]

Energy bandgap temperature parameters aEG 5.405- 4 eV. K [40]
0 204 K [40]

Temper. coeff. for free electron absorption 7fc  0.34 [41]
LO phonon energy hwL°  29.6 meV [39]
Threshold momentum parameter
for CHHS Auger process a 0.22 [31]

[100]-plane quantum-well eff. heavy hole mass m' 0.45mo [291
[1001-plane quantum-well eff. light hole mass mq 0.08mo [29]
Electron mobility parameters
for ionized-impurity scattering Ni" 9.85. 1016 cm - 3  [421 3

eion 0.553 [42]
Hole mobility at 300 K [cm 2/V-s] Ah 400 [431
Hole mobility param. I
for ionized-impurity scattering Nih0n  6.25- 1017 cm 3  [44]

Carrier-density dependence of refractive index -1.05. 10- 20 cm 3  [45] 3
Thermal coeff. of refractive index 4.9. 10-4 K- 1  [46]
Free carrier absorption cross section aoc 3- 10 8 cm 2  [47]

Pfc 7-1018 cm 2  [471

The physical parameters used for the computation of Auger recombination for GaAs I
are shown in Table 2.1.

2.3.4 Radiative recombination I

Above threshold, we have stimulated emission as well as spontaneous emission. Either 3
type of light emission comes from both the heavy-hole (v = e-hh) and light-hole (v = e-lh)

transitions. Under the assumption of strict k-selection, the mode gain and spontaneous I
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emission factor in (1.5) can be expressed as

I :? 1 t-(, f(E,) [1- f(E:,)]

~~~? ~, I = f ~)fE,~ i(.2

1 . - f2 (.1

10. 12 + /E

IMbI2J' oEG 12.13)- 12mn 1 + 2A/3E ' (2.13)

where B1 is the Einstein coefficient of optical transition for mode v, and Af is the refractive

index around E =hw1,. Integration denoted by fv is done over the whole volume of the
laser cavity. The function f(E) is the probability of an electron state at energy E being

occupied, and the constant IMbI2 is the mean absolute square of the matrix element

of the momentum (to the optical polarization direction) obtained with respect to the

Bloch wavefunctions for the conduction band electron state and a randomly polarized

valence band electron state both at k = 0 [48] [491. We normally use the Fermi-Dirac

probability function for f(.) by assuming that the local equilibrium is always maintained.
The function g(E,, - E,) (with v = e-hh, e-lh) is the reduced density of states for

optical transition between two levels of energy-E ,, in the conduction band and E, in

the valence band.

- EC -E
E ,,. ~ , M-- rc 1 + Al , .-E -

m/mer  1nj/m r + 1

The energies E (o and Ee, are similarly defined with mn replaced with o in the

above equations. We optionally use a staircase quasi-two-dimensional density of states
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I
for the quantum-well layer [50] and a square-root density of states for the other regions.

2m, N(E) dE, in quantum-well,

g,,(E)dE = (2.14)2m,

;2 32m. (E - Ear ) dE, otherwise,

N,(E) Int(- 2m (E- E) , (2.15) 3
for v = e-hh, e-lh with 3

M.- (1/mr + 1I/mh)-l, (1/mr , + 1/mu)-'

(1/Me'+ iMq)', Mqu1 (1/mr+ 1Mq) -1
Mne-hh hh , Ih2~l

where jq is the thickness of the quantum-well layer. The effective masses mh and mh

are the heavy and light hole masses, respectively, in the quantum-well layer parallel to 3
the [1001 plane. Function Int(x) takes the maximum non-negative integer less than x.

Experimental results do not show strict k-selection. The opposite end to this model I
is no k-selection except the subband selection, whose gain coefficient spectrum shape was

found to agree better with experiment than strict k-selection in the case of quantum-well I
lasers [51J. However, no-h-selection model introduces several fitting parameters which

are multiplication factors for the momentum matrix elements [52], [51]. We use a relaxed

k-selection model based on recent publications [531, [54], which will need an elaborate 3
verification in the future. To simplify the convolution integral which is not acceptable

in this two-dimensional simalation, we use the following multiplication factor preIx(E) 3
which is multiplied to the reduced-density of states in (2.14). That is, for the transition

between the conduction and the heavy hole bands, 3
p -'(E) - I + tanh E E ), (2.16)3

I
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where E is a parametric relaxation energy for our approximation. We have chosen

E., l 5 meV in order to fit the results of [53]. Note that this relaxation reduces the

maximum gain coefficient substantially, which in turn increases the threshold current

estimation. For v = e-lh of light-hole transition, E 0t , and mh are replaced by

I-, Ej1, and m~h, respectively.

We have also incorporated polarization-dependent gain coefficient change for quan-

tum-well lasers acco'ding to [55]. Between the two orthogonal polarization modes of

guided optical fields, the transverse electric (TE) mode is usually dominant either because

of the reflectivity difference from cleaved facets without special coating [561 or because

of the low chance of the gain spectrum over the first light hole band being the peak. We

therefore confine the treatment to that of the TE mode transition. For the transition

between the conduction and the heavy hole bands,

3 ( E:, ()=,3)t (2.17)
(E)= ( 1+ -E r ).

This extra factor is then multiplied to the reduced density of states as well as prel(E).

For the transition between the conduction and the light hole bands,

Et h4~ + Ej'h (218PTE(E)= ( 2- E) (2.18)

The temperature dependence of the energy band gap of the active region material is

of importance since the band gap determines the wavelength of the stimulated emission.

We take Varshni's [57] formula:

EG(T) = EG(O K) - aErT'I (T + 0). (2.19)

The radiative recombination rate can also be represented in terms of r' and r as

UraA= r"S., +W2 rSP dw, (2.20)
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The experimental data for the spontaneous radiative recombination factor Br (x) are

not available for Al=Gal-_.As. However, we can deduce that it has only a small variation

which comes from the the functional dependence of the Einstein A coefficient. That is,

ra(X) = Br0) [EG(X)IMb(X)[2 E2(0)1Mb(0))2

where IMb(X)1 2 is given in (2.13) with x-dependent mr and Er .

The numerical integration in (2.20) imposes a heavy computational load. We therefore

compute the second term of the right-hand side of (2.20) with (2.12) inside the active I
layer only, where most radiative recombination takes place. In the other regions, we

approximate (2.20) into I

Urad r ZrS. 4 +B (nr - nOPO)I

The value of the constant B0 is given in Table 2.1. I

2.3.5 Refractive index I
To accommodate the refractive index variations for all the regions including the active 3

layer, we use the following formula:

[A( + _T V + O'(T - To)] + A&7 (2.22)

where -0 is the vacuum permittivity, #T is the thermal coefficient of refractive index

change, and (d, / ,/-)T=b represents the change due to band-to-band transitions of

carriers via the Kramers-Kr6nig relation. The latter value for the active region is obtained

by subtracting the theoretical free-carrier components from the empirical data of [45] for I
the overall carrier-density dependence. In (2.22), Vn-p has been taken to interpret the

empirical values obtained under the approximation n = p in the active layer. For the
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other regions, we neglect the change in (2.22) due to the band-to-band transition, either

because the absorption edge is well above the stimulated emission frequency or because

the optical field intensity is negligibly small in those regions.

For strongly gain-guided structures, we should include change of the imaginary part

of the refractive index. This results in a complex matrix of a non-Hermitian type after

discretizing the Helmholtz equation, (2.5). The work for the gain-guided structures is

reserved for future research.

2.3.6 Free-Carrier absorption and photon lifetime

The free-carrier absorption rate is proportional to the light intensity and Lhe carrier

densities. It is related to the free-carrier-absorption coefficient afc, evaluated for a bulk

semiconductor, as follows:

Rf f c S" 1 , 1 f =fc+ fc
- " O9 n OP p ,

where an and fc is the free-carrier-absorption cross-sections for electrons and holes,

respectively. The temperature variation of these coefficients for bulk GaAs is not strong.

For instance, in the case of electrons, we can only deduce rc , To3 around 300 K from the

data in [41]. We therefore ignore temperature dependence of the free-carrier-absorption

coefficients, and take a simple model [47] of constant c and af.

For the graded-junction cladding layers which sandwich the active layer, to our knowl-

edge, experimental data are not yet available for the various mole fraction x of AlAs. We

thus proceed with approximate values deduced from the available GaAs data.

The overall free-carrier-absorption coefficient for the calculation of photon lifetime r,

follows from the above absorption rate as

= , ,f I $ 12 d3r. (2.23)
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The overall inverse photon lifetime which we need for (1.5) is then expressed as

T.,= Vg a + a: "g + (2L)- ln(1/RiR2 )], (2.24)

where vg is the group velocity of mode v, and aw"g is the waveguide-scattering loss

coefficient for mode v, which depends on geometrical irregularity formed during the

fabrication process of the laser waveguide.

Since there are graded heterojunction regions in the profile of semiconductor lasers, we

need values of material parameters as functions of variable Al composition. In Table 2.2,

such parameters which are obtained with a linear or quadratic interpolation are shown. In

the table the lattice thermal conductivity te in (2.4) is represented by the inverse, whose I
quadratic approximation fits better with experiments than that of K itself. However,

parameters such as carrier mobilities are not as simple to be represented as others in I
Table 2.2. 1
2.3.7 Carrier mobilities of AIGalAs

The electron mobility reflects the lowest band minimum among three conduction band

minima, F, L, and X. We seek to express the experimental results in [68] as follows:

8000 - 1.818. 104x, 0 < x < 0.429, 3
1n-deg 90 + 1.145. l05 (x - 0.46)2, 0.429 < x < 0.46, (2.25)

90 + 3.75. 104 (X - 0.46)2, 0.46 < x < 0.50,

200 - 2.0/(x - 0.46), 0.50 <_ x < 1, I
in units of cm 2/V.s. The temperature dependence of electron mobility in doped AIGaAs

(or even GaAs) is not well modeled due to various factors including the above-mentioned

complex conduction band structure [63]. The modeling of this is reserved for future work.

scattering-limited Here we multiply a crude doping-dependence factor to the expres-

sion for the electron mobility of lightly doped AIGaAs in (2.25). This factor was taken

I
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Table 2.2: Al Gal..,As Characteristics

parameters symb. function of x, Al composition ref.

Static permittivity t 13.18 + (10.06 - 13.18) x [58],[59]
Refractive index at h- = 1.38 eV X 3.590 - 0.710x + 0.091x 2  [471
High freq. permittivity t". 10.89 + (8.16 - 10.89) x [58],[59]
F valley enegy gap at 300 K [eV] Er  1.424 + (2.671 - 1.424) x [47]

and its temper. change [eV/K] r [-3.95 - (5.1 - 3.95) x]. 10- 4 [60],[61]dT

X valley energy gap at 300 K [eV] Ex  1.9 + (2.168 - 1.9) x [62],[63]

and its temper. change [eV/K] -3.6. 10- 4  [61],[63]dT

Diff. between the valence band
and spin-split band edges [eV] A .340 -. 040x [63]

Donor ionization energy
for F band [meV] fr 5 + 5x [64],[63]

Donor ionization energy
for X band [meV] 25 + lOx [64],[63]

LO phonon energy [meV] hwL°  36.25 - 6.55x + 1.79x 2  [65]
F valley electron mass mr .067 + (.15 -. 067) x [m0 ] [471
X valley density-of-states-equiv.
electron mass n e  .32 + (.26 - .32) x [io] [63]

Heavy hole mass mh .62 + (.76 -. 62) x [mo] [66]
Light hole mass M, .087 + (.15 - .087) x [mo] [66],[67]
Thermal resistivity [K.cm/W] W 2.27 + 28.83x - 30x 2  [63]
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I
from data in [42] for GaAs..

Re = (pn-degNc) ~0.34 + 0.66 to (2.26)
1 (N+ Nion

where ph is the density of heavy holes which act like ionized impurities for electrons [69].

To our knowledge, no experimental data published for the compositional variation of

the hole mobility in AlGal-.,As are available. We generalize the theoretical scheme in

[70] for the mobility parameter Mh as

1 1 [1/e(X) 1/6"(X) T 0.8 1
Mb -. degN] _0 [1/68 (0) -1/6-0() (T)O

T =To

ND+ + NZ Mhhl(X) + mulh(X) '~(0n \2 O31
+ Nho"(0) mhi(0) + rnf(0) t-te -)"

(2.27) 1

where N ,°l refers to the parameter for the ionized-impurity-scattering-limited hole mo- -
bility for GaAs, and mrnh(x) and mh(x) represent the appropriate effective masses with

the Al composition x. eo is the dielectric constant at high frequency, whose normalized I
value is found in Table 2.2. I
2.4 Numerical Approach

The box-discretization [201 of these device equations has been used with the gen-

eralized Scharfetter-Gummel discretization s:haeme [21] described in Sec. 1.5. The four 3
equations (2.1)-(2.4) for the electronic part are then solved by the full-Newton method

and a sparse matrix package [711-[72]. Since the current flow near the surface does not 3
count for the overall characteristics in the case of semiconductor lasers, simple ohmic

contacts at the electrodes have been assumed, and Neumann boundary condition3 with I
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vanishing flux have been used at the surfaces without electrode contact throughout the

simulation. Current boundary conditions and the heat current boundary conditions have

been employed in consideration of application practice in driver circuits for semiconductor

lasers.

The steady-state solution can be obtained by solving the steady-state problem for the

electronic part equations by letting d/dt zero and solving the time-dependent problem

for the rate equation. Other authors of semiconductor laser simulations used a simpler

* method which was described in [16]. However, when there are multiple modes competing

with each other, such methods cannot be used.

* Since we have adopted the full-Newton method to solve the electronic part equations,

we can employ the fully-implicit-backward Euler method [141 to obtain the dynamic

3 solver, thus avoiding the stability problem associated with the first-order time derivatives.

The rate equation is also treated with the full-backward Euler method, and this rate

equation is coupled with the electronic part equation by solving the two time dependent

problems alternatively. The optical field pattern is obtained by solving the Helmholtz

eigenvalue equation at each iteration. We should understand that the whole procedure of

time dependent solution then does not become a fully implicit backward-Euler procedure

I since we still have two parts to be solved iteratively. This limits the size of the time step

which is set especially during the transients of the relaxation oscillation which appears

when the laser is driven by a step current.3 The Helmholtz eigenvalue equation, (2.5), is solved by Rutishauser's subspace itera-

tion subroutine RITZIT [73]. The routine solves for the desired number of eigenvalues of3 the largest magnitude and the corresponding eigenvectors. From the mathematical na-

ture of the problem, the largest magnitude eigenvalues are negative. Therefore, we need

3 to shift the spectrum to make the most positive eigenvalue-the fundamental transverse

mode eigenvalue-the dominant one [74.. We then need not employ the inverse itera-3 tion. This method allows us to obtain only the desired physical eigenvalues and their

characteristic optical field patterns.

3
I 31

I



I
The overall flowchart of the program is shown in Figure 2.1. It has an input card pars-

ing structure. Graphical outputs are generated exclusively in the POSTSCRIPT language

source code format, which allows a flexible, device-independent, and unilateral operation 3
for all types of graphical output.

2.5 Application to Quantum-Well Lasers I

We have applied our simulator to a 380 pm-long GaAs-AlGaAs GRINSCH buried-

quantum-well laser [27], wnose cross-sectional view is shown in Figure 2.2. The semi-

conductor equations yield the three solutions for the potential, the electron and the hole n

densities. The temperature distribution over the cross-sectional profile is depicted in

Figure 2.3. We have assumed that the cathode is in contact with an ideal heat sink, and

that the energy flow out of the anode side is negligible. We have found that electrons

and holes are very effective energy carriers. The increase of the temperature slope in

the middle of the cross section represents the poor thermal conductivity of AlGaAs com-

pared to pure GaAs in the substrate. The hump above the quantum-well active region

represents a heat dissipation from the electron system by the free-carrier absorption of 3
the photon energy. The temperature elevation around the active layer depends strongly

on the distance between the active layer and the heat sink. 3
The current flow diagram is shown in Figure 2.4. The figure shows that the re-

verse-biased junction across the blocking region of higher bandgap sufficiently channels 3
the current through the narrow forward-biased region without introducing any insula-

tor material into the laser profile. The thermionic injection current simulation has been I
found indispensable in the simulation of a quantum-well laser, since the different treat-

ment of normalized carriers in the discretized carrier transport equations as described in

(1.30) in the different regions of the device-inside and outside the quantum well-yields

an unphysical result with only a drift-diffusion model applied everywhere. Figure 2.5

demonstrates this by showing the two uninterpolated pictures of current flow diagrams,
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Semiconductor eqs.

Input parser: (incl. heat eq.)

device geometry/
doping, bias spec. Helmholtz eigv. eq.
laser cavity length for the opt. field

I j Initial photon numbers ]

Semiconductor eqs. ]
I I ~Helm holtz eigv. eq.,

Update parameters Update photon numbers
New rad. rec. rate by photon rate eq.

No 
C n eg d

c P O ST S C R IP T Graphic s  J

Figure 2.1: Flowchart of MINILASE.
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anode -- 2.6 am GaAs (QW active layer) Al compo tion.0 .25 .5

n-Al.65Ga. 35As p-Al 5Ga 5As n-Al 65 Ga 35As t

p-Al 65Ga 35As n-AI 5 Ga.5As p-Al 65Ga 35As 20 nmn

10 Pm n-I 5 a 5 s -____ _ -Al 6 a.3 5As

6 3
n+-GaAs substrate

10 3
cathode 20 pm lm]

(a) (b)

Figure 2.2: (a) Schematic cross-section of a simplified GaAs-AlGaAs graded-index- I
separate-confinement-heterojunction buried-quantum-well laser. The layers above and
below the active layer are quadratically graded from Al.2sGa.TsAs to Al.5Ga.5As. These
three layers are undoped. (b) Variation of Al composition along the center line.

one with a thermionic emission simulation and the other with a drift-diffusion model I
only.

We have also obtained a light-current curve as shown in Figure 2.6 by varying then

carrier injection. This shows a threshold current of , 3.75 mA and a local threshold

current density of 380 A/cm 2 inside the channel between the two blocking regions of the I
higher bandgap. The latter number matches very well with various experimental data

of broad-area single-quantum-well GRINSCH lasers [75]-[76]. The values from others'

theoretical calculations [77], [501 vary from 240 A/cm 2 to - 550 A/cm 2, since each author

used different values for the material constants (e.g., m'), the waveguide scattering loss

coefficient, and the intrinsic loss coefficient, and also treated the k-selection rule and U
polarization dependence differently.

From the eigenvalue solver, we have obtained the optical field profile as shown in 3
Figure 2.7. From the spectral analysis, we have obtained the gain spectra (Figure 2.8)

and the optical output spectra (Figure 2.10) for various carrier injection levels. The U
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Figure 2.3: Temperature distribution profile for the half domain at a 180 mA current
level. The cathode is assumed to be in contact with an ideal heat sink. Energy flow out
of the anode side is assumed to be negligible.
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Figure 2.4: Current flow diagram for the half domain at 4.0 mA. One fortieth of the
total current (electron current plus hole current) flows between the two adjacent lines in I
the diagram.
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Figure 2.5: Uninterpolated current flow diagram for the half domain at 3 mA with
simulations (a) of thermionic emission as well as drift-diffusion and (b) of drift-diffusion
only.
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(b) 3
Figure 2.6: Light-current curve of a model quantum-well laser. (a) Around the thresh-
old. (b) Over the injection current of 0-160 mA. 3
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C')

U)

quantum well

Figure 2.7: Optical intensity profile around the quantum-well region yielding an optical
confinement factor of 3.9 %.
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photon energy [eV]

(a) 3
Figure 2.8: Gain coefficients at various current levels. Free-carrier loss has been ob-
tained to be 2.0 /cm, and the waveguide scattering loss has been set at 5.0 /cm. (a)
Around threshold level. The results show the gain saturation above the threshold.

(continued on p. 41) 3
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QW thickness 20 nm, laser length 0.38 mm
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total loss coeff. 33.2 /cm
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Figure 2.8: (continued) (b) Far above threshold. The gain curve shifts to the lower
energy spectrum as the current increases, because the band gap changes due to increasing
temperature.
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Figure 2.9: Approximate lattice temperature in the well. 3

gain coefficient (G,,/vg with G, in (2.11) and the group velocity vg) curves show the gain

saturation effect above the threshold. Also, the gain curve shifts to the lower energy

spectrum as the current increases because the band gap changes due to increasing tem- -
perature at the quantum well. The temperature in the middle of the quantum well is

shown in Figure 2.9. The free carrier loss is obtained from a numerical integration as in 3
(2.23), and the value is about 2.0 cm -1 above threshold. The waveguide scattering loss

is still an unknown fitting parameter. We have chosen a typical value, 5.0 cm - 1, from 3
literature [47].

Users of MINILASE can optionally choose the staircase-like density of states for the 3
region assigned to be a quantum well with quasi-two-dimensional electron and hole gases.

The resulting gain and mode spectra from the staircase-like density of states are shown I
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Figure 2.10: Spectra of photon numbers of fundamental-longitudinal modes at various
pumping levels, A staircase-like density of states for a quasi-two-dimensional electron gas
is used. (a) 2 mA.

(continued on p. 44)

in Figures 2.8 and 2.10, respectively. These diagrams show size-quantization effects and

the subband level which supports the stimulated emission.

A mode development diagram can be obtained from the transient simulation, and is

shown in Figure 2.11. We have assumed that the laser is driven from 2 mA abruptly

to 10 mA at t = 0 ns and from 10 mA back to 2 mA at t = 7.5 ns. The size of the

time step has been set uniformly at 25 ps, which has been found to be adequately short.

The figure shows the initial turn-on delay time of 0.9 ns and relaxation oscillations of

the optical power for 2 ns. Also it shows that several modes develop their magnitudes
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Figure 2.10: (continued) (b) 4 mA. I
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Figure 2.10: (continued) (c) 10 mA.
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Figure 2.11: Both turn-on and turn-off transients in time. A series of current level 3
change from 2 mA to 10 mA at t = 0 ns and from 10 mA back to 2 mA at t = 7.5 ns has
been simulated. Each line represents intensity development of each mode. The central
mode is denoted by half tone over the entire time scale to show its location in spectrum I
at the initial stage. The time step size of transient simulation has been set at 25 ps.
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simultaneously at first, but only one mode has significant power in steady state. Also

the center frequency and the spectral width change during the time development. The

turn-on delay time and the period of relaxation oscillation depend on the various driving

conditions of the laser. As is evident from the figure, the turn-off transient is negligibly

short compared to the initial turn-on delay and the relaxation oscillation.

Figure 2.12 was obtained by applying a current step from 2 mA to 50 mA. The turn-

on delay time has been shortened to 0.22 ns and the period of relaxation oscillation has

become shorter than the case of Figure 2.11. In Figure 2.13, we show the time-develop-

ment of carrier densities inside the quantum well. The magnitude of the initial peak

in the optical power depends on the size of the time step taken for the time-dependent

solution. This is because the whole procedure of the time-dependent solution is still not

fully backward Euler, which was discussed in Sec. 2.4. Inadequately long time step gives

an excess peak in the initial relaxation oscillation of the optical power. For instance,

when we used the time step size of 5 ps instead of 2.5 ps for the current pulse of 2 - 50 -

2 mA sequence, we have observed the initial relaxation peak about 10 % larger than the

peak observed with the time step size of 2.5 ps. One additional cause of the excessive

peak in the initial relaxation oscillation could be because we have used a rate equation

II which averages out the intensity variation along the optical axis, and therefore ignores

time required to sweep through the optical axis.

All these transient response characteristics are in good agreement with what experi-

ments have suggested [78].
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Figure 2.12: Both turn-on and turn-off transients in time. A series of current level
change from 2 mA to 50 mA at t = 0 ns and from 50 mA back to 2 mA at t = 1.5 ns
has been simulated. Each line represents intensity development of each mode. The mode
distiguished from others by half-tone is the one which gives the peak at initial relaxation 3
oscillation. The time step size is set at 2.5 ps.

I
I

48 I
I



X1 018 cm--3
3.5

3-t[ / carrier density in QW

2.5-

C:, 2

-. 1.o

- steady-state light output•
S13.47 mW/facet

I 0.5

0 0 2 3 4 5 6' 8

time [ns]

U (a)
Figure 2.13: Development of carrier densities (n _ p) in time in the middle of the
quantum well in response to square pulses. The change of the laser light output is also
shown with an arbitrary scale. (a) In response to a square pulse, 2 mA - 10 mA - 2 mA.

(continued on p. 50)
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Figure 2.13: (continued) (b) In response to a square pulse, 2 mA - 50 mA - 2 mA.
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CHAPTER3

CONCLUSIONS

We have developed a two-dimensional simulator (MINILASE) which analyzes vir-

tually all aspects of semiconductor laser operations. The simulator solves the device

equations, heat flow equation, optical field equation, and the photon rate equation in a

self-consistent manner. It gives all the solutions to the standard device equations and the

resulting current flow diagrams and the temperature profile. It also generates the light-

current curves, the optical field profile, the temperature profile, the spontaneous-emission

spectrum, the optical output spectrum, and the gain spectrum.

In order to solve for the internal temperature distribution over the device cross sec-

tion, the energy transfer in degenerate semiconductor devices has been examined, and

the relevant differential equation has been solved together with the device equations.

Proper inclusion of the Fermi-Dirac statistics has been found to be essential to obtain

a differential equation which is linearly independent of the rest of the device equations.

A set of novel expressions for the various fluxes has been suggested to account for the

Fermi-Dirac statistics for the most important scattering mechanism, in which the scatter-

ing time is inversely proportional to the group velocity of carriers. Explicit formulas for

the discretization of these fluxes have been found by extending the Scharfetter-Gummel

scheme. There are many limitations in practical circumstances with regard to the bound-

ary condition of the energy transport equation. A thorough treatment for the internal

distribution of the temperature is a complex problem in which one needs to simulate the

outside of the device as well as the inside.

Although derived under a series of assumptions and approximations, we think that

the formalism presented in this thesis is general enough to be used in simulation of
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U
heat transfer in many types of semiconductor devices, including heterojunction devices

such as semiconductor lasers where local power consumption is an important factor for

device performance. The algorithm presented here has been subjected to a series of I
experiments on a computer in the MINILASE project of the author, and results were

given in Chapter 2. I
We have presented the first two-dimensional simulation of the optical processes in a

semiconductor laser using the rigorous Einstein coefficients of optical transition for indi- I
vidual Fabry-Perot modes of the laser resonator. Consequently, it is capable of simulating

quantum-well lasers and their spectral responses. MINILASE is also the first attempt

to use the full-Newton method for the system of equations obtained from discretization

of the standard device equations and the heat flow equation. This enables us to analyze

the temperature effect of a forward-biased semiconductor device self-consistently on var-

ious physical parameters such as the threshold current. Finally, MINILASE can obtain

the two-dimensional transient-response including the initial relaxation oscillation of the

individual Fabry-Perot mode intensities in a semiconductor laser.

The first priority of the MINILASE program has been a faithful implementation of I
physics, yet retaining versatility and flexibility of the program for a wide range of appli-

cations. We expect the simulator to be a useful design tool for optimizing semiconductor I
lasers as well as a useful research tool in quantum electronics laboratories.

I
I
I
I
I
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APPENDIX A

ENERGY CONSERVATION FROM THE BOLTZMANN
TRANSPORT EQUATION

Azoff [7] has derived the energy transport equation for the nonparabolic band struc-

ture from the classical Boltzmann transport equation (BTE) by taking the second mo-

ment (cited as the third moment in [7]). The same equation can be derived in a much

simpler way by using an equivalent form of the BTE in which the velocity t k and the

force Fk follow the divergence symbols. Also, rather than taking the second moment

for the standard equation, we can set up a version of BTE with respect to (Ek + Ec) fk

for the electrons in the conduction band, since the total energy is conserved in much the

same way as the total number of particles is conserved. In this way, no complication due

to the nonparabolicity of the band appears in the derivation of the relation for the first

law of thermodynamics. That is,

5 (Ec + Ek) fk + Vk -" (Ec + Ek) fk

+~~~ ~ ~ V 8k(k+EC (Ek + Ec) f kIc~ (A. 1)I-+V.vk(Ek+4-Ec)fk= [ E+E kc,"

i The subscripts c and r stand for collision and recombination, respectively. Integrating

I this equation over the Brillouin zone in the reduced-zone scheme yields

U(E n ) + V. (Skin+ E~j E (a'fk' d 3 k

at /B. at /c,r43

- EC (UHSR + UAug + Urad), (A.2)

which then reduces to (1.1). Here un and Skin can be identified as the kinetic energy

Idensity and the kinetic energy flux of electrons, respectively. Substituting (1.15) into
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(A.2) yields the standard equation.

0--- +V.Skin+VECj=fEk d-
at-e e JBZ \E49 c,r4r(A3

Note that the conserved quantity is not just the internal energy, but the kinetic energy

which is the internal energy plus fBZ(Ek-Eki)fkd 3k/47r3 . Note also that this expression

explicitly separates out the Joule heat from the total energy flux in (1.1). A source of I
ill-conditioning in possible implementations of this term is in the form of an inner product

of the two gradients [79]. I

I
I
I

I
I
I
I
I
I
I
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APPENDIX B

EXPRESSIONS FOR THE HEAT FLUX

B.1 From Relaxation-Time Approximation

The integral expression for the energy flux from electrons is

r d3k kn

$e = Vk(E + EC) Ak--' =Sk + Ecj,. (B.1)

From the relaxation-time approximation, the probability distribution function fk satisfies

[12]

fk+  (fk f-k)/2, f; -(fk - f-k)/2, (B.2)

f;'= -Tk (19109 + Vk - V - VE/h .Vk) f+. (B.3)

We obtain f" by approximately equating f+ in the right-hand side of (B.3) to the Fermi

distribution,

fF(T.) = {exp[(Ek + Ec - F.) /T.] + 11- 1,

where T, is the adjusted electron temperature for nonequilibrium under the influence of

an electric field [12]. With this f;, we obtain the following expression for Se in (B.1) [5]

as

$ n = 11, je = Io, (B.4)

I~J TkVkEVkj-VF.e+ E - F, T OfF d3k(B5
Tc c) aEk4 (B.5)

The relaxation times for various scattering mechanisms as functions of velocity or kinetic

energy of electrons can be found, e.g., in [8], [12], and [80].
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Consider now a case where the relaxation time is proportional to IVkJ -I.

7 1 aEk
Tk IVk k= kl, (B.6)!,= kl = h Ok'

where 7 is velocity-independent. As considered by Stratton [1] with Vk = hk/me, the 3
above form is particularly suited for such materials as moderately-doped Si and Ge, where

acoustic phonon scattering represents a major scattering mechanism. For moderately-

doped III-V semiconductors where optical phonon scattering is predominant, the relax-

ation-time approximation with (B.6) is not strictly valid [12], [801, although still a good I
approximation at high temperatures [12]. Notice that ionized impurity scattering fol-

lows the same velocity dependence for the case of heavy screening, since in this limit

the scattering potential is of short range [12]. Therefore, for laser application, factoring

out 1VkJ- 1 appears to be an excellent approximation, at least as long as the experimen-

tal mobility exhibits degrading with increasing temperature and with increasing carrier

densities.

Following Kane [48), Nag and Chakravarti [81] derived an approximate relation be- 3
tween k2 and Ek of an isotropic band structure under the assumption that Ek < EG: I

h2k 2/2m = Ek (1 + aeEk). (B.7)

I
The analytic expression for the nonparabolicity ae is given in the literature for various

semiconductors (82], [44], [831. Then, (B.5) becomes

2I'me Jo QeE+2)
1 3 (Ej+1 + i,

x (VE& + TcVnie + fkVTc.) "FtidEk
Ek Ek

= M, {[To3 (j + 1)!Yj(q.,) + aTri +" (j + 2)!'j+ (71e)]

x (VEc + TcVqe) + [Tog (j + 2)!Fj+1 (7.) I
+ a'.T?'+ (j + 3)! 1'j+2(l.)] VT¢}. (B.8) 3
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2meM ( ) -3-r 3 C-T '

and the electron particle flux and the energy flux are given by

j. = -M. {[Io(ie) + 2a.Fi(r.)] (VEc + TcV?7,)

+ [2 1 (7,.) + 6a.,' 2(,e)] VTc}, (B.9)

Se = ECje - MT, {[2JFi (,ie) + 6 a-2(ni,)] (VEC + TcVle)

+ [67 2(77e) + 24a. 3 (i/.)] VT¢}, (B.10)

respectively.

With this expression for the energy flux, we can separate the energy flux into a com-

ponent which is carried by particle flux and the thermal conduction which is independent

of particle transfer, by rewriting (B.10) as

Se = Ecj, + 2FeTcj, - K. VT , (B.11)

r -_ + 3a.7j2
C = Fo + 2acF''

[2F + 6ae] 2

K., MeTe {6F2 + 24a,.7 3 - F.o+- "21  (B.12)

The thermal conductivity K, reduces to 2Tc times the electrical conductivity for nonde-

generate semiconductors as expected. For extreme degeneracy [101,

j(1) _ 7i+l/(j + 1)! + 7r2 nj- 1 /6j!, as 77 -- oo, (B.13)

K, reduces to 7r2Tc/3 times the electrical conductivity, as in the case of a metal. Over-

all the thermal conductivity is proportional to Tc times the electrical conductivity in

agreement with the Wiedemann-Franz law.
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I
Equation (B.11) can be used for the simulation of semiconductors neglecting the last

term when Ke is negligibly small compared to te of the crystal lattice. There exists

a possibility of an ill-conditioned matrix problem when r is very close to 1 (as in a 3
nondegenerate region of a device) or almost constant (where the grid structure is too

fine). Our conditioning treatment in Sec. 1.4 should be helpful in those cases. I
As was pointed out in Ref. [13, p. 26], the term "heat flux" can be defined in various

ways. The last term of (B.11), which represents "heat conduction," corresponds to one I
of many forms defining the heat flux of the electron subsystem. The heat flux S2 of a

single-component system is defined from a classical relation [13]:

$e = Ecie + ueje/n + (Pe + I'). je/n e ,  (B.14) I

where Pe and 1le are the so-called elastic stress tensor and the viscous stress tensor of I
electrons, respectively. This form is the basis of the hydrodynamic model of electron

transfer in semiconductors.

Decomposition of total energy flux in (B.14) applies well only to the case of a clas- -
sical electron gas, which supports the quadratic relationship between energy and crystal

momentum. Explicit expressions for all energy flux components of degenerate electrons

in the parabolic band structure can be found from the expression for the energy current

given in (B.10) with ae = 0. For the heat flux, however, a phenomenological relation 3
S? cc -VT, has been used in the previous literature [84], [85], [7].

For a multi-component system, the electronic heat flux is defined differently, and is 3
equal to 5.',, since the total momentum of the whole system can be considered stationary

(the total mass of conducting electrons being negligible to the total mass of the whole I
system). This electronic heat flux obviously has a convective energy flow component

as stated in Ref. [2]. However, it is shown in Sec. B.2 that even the heat flux SQ for I
the single-component system as in (B.14) may have a convective component of sizable

magnitude which arizes from particle diffusion in addition to the energy flow from the

temperature gradient.
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3 B.2 Heat Flux in the Hydrodynamic Model with the Relaxa-
tion-Time Approximation

To obtain expressions for carrier and energy fluxes in a binary system consisting of

electrons and lattice, we have approximated the collision term of the BTE as

(0fk/0t)c - - (fk - fP) /rk, (B.15)

so that the relaxation time rk measures the characteristic time within which f(r, k) goes

to a stationary distribution, fs', at a certain space-momentum coordinate (r, k). We

then have equated f t with fF(T,), the nondisplaced Fermi distribution.

Note that in hydrodynamics of a gas of identical particles which mainly interact with

3 themselves, the distribution function becomes approximately a displaced Maxwellian.

This approximation is valid for an electron gas in which interaction between electrons

3 and the crystal lattice is turned off, since electron-electron scattering will randomize

the velocity distribution around the mean velocity. The equation obtained by inserting

I the displaced Maxwellian to fs' is not a usual form of relaxation-time approximation.

However, the situation is a typical example in hydrodynamics, and there exists an asymp-

totic method of solution to a general BTE due to Enskog. According to this method,

it has been shown, up to the second-order of Enskog's solution, that the heat flux does

not have a convective component of energy flow, and the first-order expression becomes

I simply SQ = -KeVT [87, p. 122].

However, the real situation of electrons in a solid is a two- or three-component system

3 whose constituents have drastically different unit masses, so that the crystal lattice is vir-

tually at rest. When other forms of scattering processes (e.g., electron-phonon scattering,

3 ionized-impurity scattering) are dominant over the electron-electron scattering, we are

led to think that the scattering will tend to randomize the velocity distribution of each

3 component around the overall mean velocity of the total system. We may suppose that

the real distribution function should be perturbed from the nondisplaced Maxwellian, so

3 that one can use fF(T) for fs t in (B.15).
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The electron-phonon scattering is indeed dominant over electron-electron scattering 3

in a modestly doped semiconductor. In a degenerate semiconductor, electron-electron

scattering accompanies and enhances the rate of other scattering processes (mostly elec- 3
tron-phonon scattering), making a second-order quantum-mechanical process [88]. The

effect of high population makes it hard to tell whether the maximum distribution is 3
displaced from the origin k = o from the shape of the distribution function. Actually,

extreme degeneracy (e.g., in a metal) makes the following discussion irrelevant, as is U
evident when we obtain the expression for the heat flux. Second, the relaxation time is

hardly a constant over different energies, and the consequent effect on the resulting heat

flux component in the energy flow in (B.14) comes not from higher than first order in

rk, but from the first order in rk. The abno:m-.ity in distribution in k-space caused by

interaction of electrons with the crystal lattice gives heat flux, while nonuniformity of 3
velocity distribution in real space gives viscosity. Therefore, the viscosity component of

energy flux is usually negligible in electron transport except in a region of high transversal 3
velocity difference as in an inversion layer of metal-oxide-semiconductor structure [89],

for instance. 3
Since the stress tensors are defined as

- d3 k (B.16)

we can then obtain an expression for the heat flux defined in (B.14) from the first-order

solution for fk to the BTE under the relaxation-time approximation. First, for the case 3
that the relaxation time is velocity-independent,

5 5 V T . (B.17)
e=-2 A-.( 2 222

For the case of a relaxation time rk oc Ivjk -', the remaining energy flux becomes to

the first order in - I

Se = -M.T. [(2. 1 - 5XO) (VEc + T~V?) 3
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U+(6'r, - 5-YJ) VT] (B. 18)

I while the viscosity component comes from a term of order rkr,. Note that it is possible

that the total kinetic energy flow lags behind the convective energy flow with fk obtained

from the relaxation time 7k oc IVkI -1 . Note that when we specified the relaxation time

in the form (B.6) for the electron-lattice interaction, we also introduced a form of en-

ergy dissipation mechanism to the lattice system. We then again separate this lagging

3 convective component of the heat flux as

5? = -T, (2- KeV c, (.19)

where Ke = MeTc (6,F 2 - 4-',yF) as in (B.12) with a, = 0. Note that, for the case of

extreme degeneracy as in a metal, the lagging convective component of heat flux again

I vanishes, leaving the heat conduction term only. This can be verified by evaluating 27 -

5-; with the formula given in (B.13). Therefore, as the carrier density increases, choice

between fM(k) and fM (k - 1) for fs t in the relaxation-time approximation becomes

irrelevant.

SMost previous simulations on heat flow in semiconductor devices have been based on

the expression for the electron energy flux given in the form (B.14) and SQ = -ICVT3 with their varying approximations for the coefficient K, [84], [90], [85], [861. Though

not clearly stated in these works, this conjecture was based on the assumption either

I that the electron gas in a solid can be approximated by a classical one-component gas (in

which electron-electron scattering represents the major scattering mechanism) or that the

first-order relaxation-time-approximation estimation on the heat flux gives a vanishing

coefficient. When we take care of the two-component scattering system, we get heat flux

component (lagging in the case of m oc IvkJ 1- arising from major scattering processes,3 e.g., acoustic phonon scattering) which is proportional to the particle flux. We thus

need to be aware of some subtraction of convective energy flow after the addition of the

3 pressure component.
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APPENDIX C

EXPRESSIONS FOR CARRIER FLUX

There are several equivalent expressions for the carrier fluxes and the energy flux for

semiconductors with nonuniform band structure. Expressions (1.15) and (1.25) are based

on the gradients of 17. (77h) with those of Ec and T,. We may even express the fluxes in

terms of the gradients of Fe and T as shown in Sec. B.2. With ae = 0,

je = -M, {-F0(1e)VF + [2 -FI(7/,) - 7leF'0(7le)] VTc}. (C.1)

This form needs further transformation before the Scharfetter-Gummel scheme can be

applied [241.

Another type of expression is that of Azoff [61 shown here for the nonuniform tem-

perature distribution:

3
qj, = lieV2T.n + /tnVEC - jnTnT V In me. (C.2)

This form explicitly accounts for the force term due to an effective mass variation in

space. He derived this expression from the momentum conservation relation with a

momentum-relaxation time, which is assumed independent of energy. The suitable form

for the Scharfetter-Gummel discretization scheme then becomes

e r
3e __ L_ jYTcVn + n [V (Ec + -iT) _ -t;.TcV In m,] (C.3)

One can readily construct a formula similar to (1.27). This expression can be interpreted

easily in a conventional way as we classify the flux components: the diffusion part and

the drift part. The drift part comes not only from the conventional force -VEc, butI
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j also from the negative gradient of the electron pressure-the median level of the electron

internal energy-and an unusual nonconservative force from thc nonuniformity of the

I band structure. This last term does not appear if we allow other forms than Vn as

the diffusion term as in (1.25). Note that when the real relaxation time is dependent

I on the kinetic energy, we cannot use the momentum conservation relation itself for the

expression of carrier fluxes. Instead, we should evaluate the moment of VkTk for the BTE.

Then we will get different coefficients and -y factors. If we extend Azoff's expression for

the case of velocity-dependent relaxation time rk = T/ Ivkl as in (B.6), we obtain

2 V[M.T ()] + 2 -m.Me-Fo(7'))VEc
Me 3 3m mMTc"r)]+  Me
5 "+

- - meMeT',Fi(e)Vlnme. (C.4)
3 me

The choice of formulas for discretization is intimately coupled with the choice of

independent variables for the system of equations. Among the options are Fe, 7e (or

equivalently X0(?ie)), and n. (The so-called Slotboom variables are not well suited here.)

Because of the wide decimal range of the carrier densities, the Scharfetter-Gummel dis-

cretization scheme appears to be a requirement. From the following considerations, we

prefer the set of flux equations given in (1.25), whose counterpart flux equations are the

kinetic energy fluxes. First, we can put all the explicit temperature dependencies in less

than three terms. Second, using the Onsager-symmetric flux equations as in (1.15)-(1.20)

makes the formulation simple and symmetric. The discretization scheme as introduced

in Sec. 1.5 is relatively simple with our choice of flux equations (1.25)-(1.26). Choosing

ie and qh as two independent variables gives considerable flexibility in handling terms

arising from incomplete ionization of impurities and from various recombination rates,

especially the radiative recombination rate in the quantum-well region.

Note the difference between the use of conventional mobilities, Pe and Ph, and the

parameters used here, Me and Mh. The theoretical definition of mobility is given in

various textbooks and is a dyadic by nature. It is a function of band structure and the

scattering mechanism through the scattering time. Use of any theoretical expression for
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these parameters is usually discouraged in favor of phenomenological expressions which 3
depend on the carrier densities, impurity densities, and temperature. Thus, there is no

restriction against using a new expression for such parameters as long as we can transform I
those available experimental expressions into ones that conform to our definition by such

relations as (1.17). In fact, the new mobility parameters with Fo(TI) actually more closely U
represent the situation in a semiconductor device in its degenerate state. Moreover, the

new parameters are often less temperature dependent than the conventional ones [91].

For the Newton iteration, it is critical to have analytic expressions for the Fermi-Dirac

integrals (.FJ(77)), their derivatives, and the inverse function for at least one of those

Fermi-Dirac integrals. Availability of closed-form expression for the zeroth-order Fermi- 3
Dirac integral, Fo(7) = ln(e" + 1) and its inverse function Y '(N) = ln(e -N - 1) deserve

mention with the special property AY'j(r) = Fj-1(77) for our emphasis on integer-order 3
integrals for flux expressions. Available analytic expressions for various-order Fermi-Dirac

integrals were reviewed in [92] with their analytic properties. 3

6
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